Я припускаю, що ви звертаєтеся до рівносторонньої гіперболи, оскільки це єдина гіпербола, яка може бути виражена як реальна функція однієї реальної змінної.
Функція визначається
За визначенням,
Це також може бути отримано за допомогою наступного правила виведення
У цьому випадку для
Що таке перша похідна і друга похідна 4x ^ (1/3) + 2x ^ (4/3)?
(dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(перша похідна)" (d ^ 2 y) / (dt ^ 2 ) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(друга похідна)" y = 4x ^ (1/3) + 2x ^ (4/3) (dy) / (dx) = 1/3 * 4 * x ^ ((1 / 3-1)) + 4/3 * 2x ^ ((4 / 3-1)) (dy) / (dx) = 4/3 * x ^ (- 2/3) + 8/3 * x ^ (1/3) "(перша похідна)" (d ^ 2 y) / (dt ^ 2) = - 2/3 * 4/3 * x ^ ((- 2 / 3-1)) + 8/3 * 1/3 * x ^ ((1 / 3-1)) (d ^ 2 y) / (dt ^ 2) = - 8/9 * x ^ ((- 5/3)) + 8/9 * x ^ ((- 2/3) (d ^ 2 y) / (dt ^ 2) = 8/9 * x ^ (- 2/3) (- x ^ -1 + 1) "(друга похідна)"
Що таке друга похідна від х / (х-1) і перша похідна 2 / х?
Запитання 1 Якщо f (x) = (g (x)) / (h (x)), то за правилом f '(x) = (g' (x) * h (x) - g (x) * h '(x)) / ((g (x)) ^ 2) Отже, якщо f (x) = x / (x-1), то перша похідна f' (x) = ((1) (x-1) - (x) (1)) / x ^ 2 = - 1 / x ^ 2 = - x ^ (- 2), а друга похідна f '' (x) = 2x ^ -3 Запитання 2 Якщо f (x) = 2 / x це може бути переписано як f (x) = 2x ^ -1 і з використанням стандартних процедур для прийняття похідної f '(x) = -2x ^ -2 або, якщо ви віддаєте перевагу f' (x) = - 2 / x ^ 2
Чому рівняння 4x ^ 2-25y ^ 2-24x-50y + 11 = 0 не приймає форму гіперболи, незважаючи на те, що квадратні умови рівняння мають різні знаки? Також, чому це рівняння можна поставити у вигляді гіперболи (2 (x-3) ^ 2) / 13 - (2 (y + 1) ^ 2) / 26 = 1
Людям, відповідаючи на запитання, зверніть увагу на цей графік: http://www.desmos.com/calculator/jixsqaffyw Крім того, ось робота для отримання рівняння у вигляді гіперболи: