Відповідь:
Пояснення:
Перший квадрант
також у першому квадранті, і так,
Тепер,
Якщо тета знаходиться у 2-му квадранті, як
за що гріх
Ось,
Якщо 2sin тета + 3cos тета = 2 довести, що 3sin тета - 2 cos тета = ± 3?
Дивіться нижче. З урахуванням rarr2sinx + 3cosx = 2 rarr2sinx = 2-3cosx rarr (2sinx) ^ 2 = (2-3cosx) ^ 2 rarr4sin ^ 2x = 4-6cosx + 9cos ^ 2x rarrcancel (4) -4cos ^ 2x = скасувати (4) - 6cosx + 9cos ^ 2x rarr13cos ^ 2x-6cosx = 0 rarrcosx (13cosx-6) = 0 rarrcosx = 0,6 / 13 rarrx = 90 ° Тепер, 3sinx-2cosx = 3sin90 ° -2cos90 ° = 3
Знайти значення тета, якщо, Cos (тета) / 1 - sin (тета) + cos (тета) / 1 + sin (тета) = 4?
Тета = pi / 3 або 60 ^ @ Добре. У нас є: costheta / (1-sintheta) + costheta / (1 + sintheta) = 4 Давайте зараз ігноруємо RHS. costheta / (1-sintheta) + costheta / (1 + sintheta) (costheta (1 + sintheta) + costheta (1-sintheta)) / ((1-sintheta) (1 + sintheta)) (costheta ((1-sintheta) ) + (1 + сінтета)) / (1-гріх ^ 2тета) (costheta (1-sintheta + 1 + sintheta)) / (1-sin ^ 2theta) (2costheta) / (1-sin ^ 2theta) Піфагорейська ідентичність, гріх ^ 2тета + cos ^ 2тета = 1. Отже: cos ^ 2theta = 1-sin ^ 2theta Тепер, коли ми знаємо, що, ми можемо написати: (2costheta) / cos ^ 2theta 2 / costheta = 4 costheta / 2 = 1/4 costheta = 1/
Нехай vec (x) - вектор, такий, що vec (x) = ( 1, 1), "і нехай" R (θ) = [(costheta, -sintheta), (sintheta, costheta)], тобто обертання Оператор. Для тета = 3 / 4pi знайдіть vec (y) = R (тета) vec (x)? Зробити ескіз, що показує x, y і θ?
Це виявляється обертанням проти годинникової стрілки. Чи можете ви здогадатися, скільки градусів? Нехай T: RR ^ 2 | -> RR ^ 2 є лінійним перетворенням, де T (vecx) = R (тета) vecx, R (тета) = [(costheta, -sintheta), (sintheta, costheta)], vecx = << -1,1 >>. Зауважимо, що це перетворення було представлено у вигляді матриці перетворення R (тета). Це означає, що R є матрицею обертання, яка представляє обертальну трансформацію, ми можемо помножити R на vecx, щоб виконати це перетворення. [(costheta, -sintheta), (sintheta, costheta)] xx << -1,1 >> Для матриці MxxK і KxxN результатом є матриця кольору