Відповідь:
Випадок - мінімальна площа:
Випадок - Максимальна площа:
Пояснення:
Нехай два подібних трикутника будуть ABC & DEF.
Три сторони двох трикутників - це a, b, c & d, e, f і області A1 & D1.
Оскільки трикутники подібні,
Також
Властивість трикутника - сума будь-яких двох сторін повинна бути більшою, ніж третя сторона.
Використовуючи це властивість, ми можемо прийти до мінімального та максимального значення третьої сторони трикутника ABC.
Максимальна довжина третьої сторони
Коли пропорційна максимальній довжині, ми отримуємо мінімальну площу.
Випадок - мінімальна площа:
Мінімальна довжина третьої сторони
Коли пропорційна мінімальній довжині, ми отримуємо максимальну площу.
Випадок - Максимальна площа:
Трикутник А має площу 12 і дві сторони довжини 3 і 8. Трикутник B подібний до трикутника A і має сторону довжини 9. Які максимальні та мінімальні області трикутника B?
Максимально можлива площа трикутника B = 108 Мінімально можлива площа трикутника B = 15,1875 Delta s A і B є подібними. Щоб отримати максимальну площу дельта B, сторона 9 Delta B повинна відповідати стороні 3 Delta A. Сторони знаходяться в співвідношенні 9: 3 Отже, ділянки будуть у співвідношенні 9 ^ 2: 3 ^ 2 = 81: 9 Максимальна площа трикутника B = (12 * 81) / 9 = 108 Аналогічно для отримання мінімальної площі, сторона 8 Delta A буде відповідати стороні 9 Delta B. Сторони мають відношення 9: 8 і області 81: 64 Мінімальна площа дельти B = (12 * 81) / 64 = 15.1875
Трикутник А має площу 12 і дві сторони довжини 3 і 8. Трикутник B подібний до трикутника A і має сторону довжини 15. Які максимальні та мінімальні області трикутника B?
Максимальна можлива площа трикутника B становить 300 кв. Одиниць Мінімальна можлива площа трикутника B становить 36,99 sq.unit Площа трикутника A a_A = 12 Включений кут між сторонами x = 8 і z = 3 (x * z * sin Y) / 2 = a_A або (8 * 3 * sin Y) / 2 = 12:. sin Y = 1:. / _Y = sin ^ -1 (1) = 90 ^ 0 Отже, включений кут між сторонами x = 8 і z = 3 дорівнює 90 ^ 0 Сторона y = sqrt (8 ^ 2 + 3 ^ 2) = sqrt 73. Для максимуму площа у трикутнику B Сторона z_1 = 15 відповідає нижній стороні z = 3 Тоді x_1 = 15/3 * 8 = 40 і y_1 = 15/3 * sqrt 73 = 5 sqrt 73 Максимальна можлива площа буде (x_1 * z_1) / 2 = (40 * 15) / 2 = 300 кв. Для мініма
Трикутник А має площу 12 і дві сторони довжини 4 і 8. Трикутник B подібний до трикутника A і має сторону довжини 7. Які максимальні та мінімальні області трикутника B?
A_ "Bmin" ~ 4,8 A_ "Bmax" = 36,75 Спочатку ви повинні знайти довжини сторони для максимального розміру трикутника A, коли найдовша сторона більше 4 і 8 і мінімальний розмір трикутника, коли 8 є найдовшою стороною. Для цього використовуйте формулу Heron's Area: s = (a + b + c) / 2, де a, b, & c - довжина сторони трикутника: A = sqrt (s (sa) (sb) (sc)) a = 8, b = 4 "&" c "- невідомі довжини сторони" s = (12 + c) / 2 = 6 + 1 / 2c A_A = 12 = sqrt ((6 + 1 / 2c) (6 + 1 / 2c-4) (6 + 1 / 2c-8) (6 + 1 / 2c-c)) A_A = 12 = sqrt ((6 + 1 / 2c) (2 + 1 / 2c) (- 2 + 1 / 2c) ) (6-1 / 2c))