Відповідь:
Пояснення:
Помножимо кубічний корінь t в дужках, отримаємо
Це дає нам
На диференціювання ми отримуємо
Що дає,
Функції f (x) = - (x - 1) 2 + 5 і g (x) = (x + 2) 2 - 3 були переписані методом завершення-квадрат. Чи є вершина для кожної функції мінімальною або максимальною? Поясніть свої міркування для кожної функції.
Якщо записати квадратичну у вигляді вершини: y = a (x-h) ^ 2 + k Тоді: bbacolor (білий) (8888) - це коефіцієнт x ^ 2 bbhcolor (білий) (8888) - вісь симетрії. bbkcolor (білий) (8888) - це значення max / min функції. Також: Якщо a> 0, то парабола буде мати вигляд uuu і матиме мінімальне значення. Якщо a <0, то парабола буде мати вигляд nnn і матиме максимальне значення. Для заданих функцій: a <0 f (x) = - (x-1) ^ 2 + 5колір (білий) (8888) має максимальне значення bb5 a> 0 f (x) = (x + 2) ^ 2-3 кольору (білий) (8888888) має мінімальне значення bb (-3)
Як знайти вісь симетрії, графік і знайти максимальне або мінімальне значення функції y = -x ^ 2 + 2x?
(1,1) -> локальний максимум. Введення рівняння у форму вершини, y = -x ^ 2 + 2x y = - [x ^ 2-2x] y = - [(x-1) ^ 2-1] y = - (x-1) ^ 2 + 1 У вершинній формі координата x вершини є значенням x, що робить квадрат дорівнює 0, в даному випадку - 1 (оскільки (1-1) ^ 2 = 0). Підключаючи це значення, значення y виявляється рівним 1. Нарешті, оскільки вона є негативною квадратичною, ця точка (1,1) є локальним максимумом.
Нули функції f (x) дорівнюють 3 і 4, а нулі другої функції g (x) - 3 і 7. Якими є нуль (s) функції y = f (x) / g (x) )?
Тільки нуль у = f (x) / g (x) дорівнює 4. Оскільки нулі функції f (x) дорівнюють 3 та 4, це означає (x-3), а (x-4) - коефіцієнти f (x) ). Далі нулі другої функції g (x) дорівнюють 3 і 7, що означає (x-3) і (x-7) - коефіцієнти f (x). Це означає, що у функції y = f (x) / g (x), хоча (x-3) має скасувати знаменник g (x) = 0, не визначено, коли x = 3. Він також не визначається при x = 7. Отже, ми маємо дірку при x = 3. і тільки нуль y = f (x) / g (x) дорівнює 4.