Відповідь:
7/4
Пояснення:
Дозволяє
Як ви знаходите межу (1 / (h + 2) ^ 2 - 1/4) / h, коли h наближається до 0?
Потрібно спочатку маніпулювати виразом, щоб поставити його в більш зручній формі Давайте працювати над виразом (1 / (h + 2) ^ 2 -1/4) / h = ((4- (h + 2) ^ 2) / (4 (h + 2) ^ 2)) / h = ((4- (h ^ 2 + 4h + 4)) / (4 (h + 2) ^ 2)) / h = (((4-ч ^ 2-4h-4)) / (4 (h + 2) ^ 2)) / h = (- h ^ 2-4h) / (4 (h + 2) ^ 2 h) = (h (-h-) 4)) / (4 (h + 2) ^ 2 h) = (-h-4) / (4 (h + 2) ^ 2) Взявши тепер межі, коли h-> 0 маємо: lim_ (h-> 0) ) (- h-4) / (4 (h + 2) ^ 2) = (-4) / 16 = -1 / 4
Як ви знайдете межу [(sin x) * (sin ^ 2 x)] / [1 - (cos x)], коли x наближається до 0?
Виконайте деяке спряжене множення і спрощуйте, щоб отримати lim_ (x-> 0) (sinx * sin ^ 2x) / (1-cosx) = 0 Пряме заміщення виробляє невизначену форму 0/0, тому нам доведеться спробувати щось інше. Спробуйте помножити (sinx * sin ^ 2x) / (1-cosx) на (1 + cosx) / (1 + cosx): (sinx * sin ^ 2x) / (1-cosx) * (1 + cosx) / (1 + cosx) = (sinx * sin ^ 2x (1 + cosx)) / ((1-cosx) (1 + cosx)) = (sinx * sin ^ 2x (1 + cosx)) / (1-cos ^ 2x) Цей метод відомий як множення кон'югату, і він працює майже кожного разу. Ідея полягає у використанні різниці властивостей квадратів (a-b) (a + b) = a ^ 2-b ^ 2 для спрощення чисельника або знам
Як ви знаходите межу (2x-8) / (sqrt (x) -2), коли x наближається до 4?
8 Як ви можете бачити, ви знайдете невизначену форму 0/0, якщо ви намагаєтеся підключити 4. Це добре, тому що ви можете безпосередньо використовувати правило L'Hospital, яке говорить, якщо lim_ (x -> a) ( f (x)) / (g (x)) = 0/0 або оо / оо все, що потрібно зробити, це знайти похідну чисельника і знаменник окремо, після чого вставити значення x. => lim_ (x-> a) (f '(x)) / (g' (x) f (x) = lim_ (x-> 4) (2x-8) / (sqrtx-2) = 0/0 f (x) = lim_ (x-> 4) (2x-8) / (x ^ (1/2) -2) f '(x) = lim_ (x-> 4) (2) / (1 / 2x ^ (- 1/2)) = lim_ (x-> 4) (2) / (1 / (2sqrtx)) = (2) / (1/4) = 8 Сподіваюся, що це д